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Abstract

A novel diagnosis scheme is proposed for wafer test-
ing, in which the test access port of each die is utilized
to perform comparison tests on its neighbors. A prob-
abilistic diagnosis algorithm is presented, which cor-
rectly identifies almost all dies, even when the probabil-
ity of failure of a die is larger than 0.5. The algorithm
determines the status of a die according to the size of
its faction, a set of dies which clatm match of their
responses. The algorithm is shown to be particularly
suitable for constant degree structures, such as rectan-
gular and octagonal grids. Moreover, the algorithm is
designed for wafer scale structures, wherein the bound-
ary dies do not have a complete regular (rectangular,
for ezample) structure. The algorithm also allows for
the fault coverage of the tests to be imperfect. In addi-
tion, diagnosis is done locally. Both the test time and
the diagnosis time are invariant with respect to the
number of dies on the wafer. Our algorithm can also
tolerate some systematic errors. Finally, the saving
of test cost could be significant as compared with prob-
ing, because in the ezisting schemes dies are probed
one at a time while they are tested in parallel with our
approach.

1 Introduction

The concept of built-in self-test (BIST), wherein
a chip or board tests itself to determine its status
(GO/NOGO), has become firmly established [1] in
the semiconductor industry. A recent IEEE standard,
1149.1, on testability bus and boundary scan has led
to the exploration of novel ways to incorporate BIST
in digital systems [2]. Recently, Rangarajan, Fussell
and Malek [3] investigated the possibility of perform-
ing probe-less testing at the wafer level.

This paper proposes a completely new approach to
BIST at the wafer level with extremely high diagnos-
tic resolution even when the yields are less than 50%.
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The paper also describes various implementation is-
sues related to BIST on a wafer.

The basic idea in the new approach is to make each
die compare its output with its neighbors and deter-
mine its own status based on the number of dies that
agree with it. This count includes those dies which
are not immediate neighbors of the die under con-
sideration but on an agreement-chain from it. This
new algorithm is proven to work extremely well even
when more than 50% of dies are faulty. A detailed
performance model of this approach is developed un-
der both the binomial and negative-binomial distribu-
tions. However, due to the lack of space, the results
based on the latter model will be described in another
paper.

"The concept of units testing each other for diagnosis
purposes started from a seminal paper by Preparata,
Metze and Chien [4]. Based on their model of test
outcomes, wherein a good unit always had a valid
outcome (i.e., tested another good (bad) unit to be
so) and a bad unit could produce any outcome, these
authors proved that t < n/2 in a n-unit system can
be correctly diagnosed only if each unit is tested by
at least ¢ other units. Chwa and Hakimi [5] proposed
the idea of comparison of outputs to perform testing.

Nonetheless, both the PMC and the CH approaches
suffer from the fact that when these models are applied
to constant degree systems, such as a rectangular grid
or hypercube, t is very small (for instance, t is four
in rectangular systems) compared to the size of the
system. Somani, Agarwal and Avis explored the di-
agnosability of such systems and determined that a
very large number of fault sets could be uniquely di-
agnosed even when their sizes are much larger than
t. Further work in this direction stems from a prob-
abilistic approach used first by Scheinerman [6] and
then by Blough [7] which firmly establishes that as n
tends to infinity, each unit can be correctly identified
when each unit is tested by slightly more than logn
units.



In constant degree structures each unit is connected
to less than logn other units except when n is very
small. One therefore needs a different strategy for such
structures. Fussell, Rangarajan and Malek [8, 3, 9]
considered the concept of multiple comparison testing
for constant degree structures and established that if
the product of the number of test links per unit and
the number of tests per link is larger than logn, a
very high degree of diagnostic resolution is possible.
They also explored the application of this idea to wafer
level testing [3]. However, certain assumptions made
in their paper cannot be easily justified for real ap-
plications. First such assumption, which is implicitly
made in [3], is that the test sets provide an aggregate
coverage extremely close to 100% (see an explanation
in Section 6). Another unrealistic assumption is that
the two faulty dies almost never test each other to
be “good”. Finally, they assume that the coverage of
each set of tests is uniform and independent of other
sets of tests. It is also interesting to note that no im-
plementation details are considered in their papers.

In an earlier paper {10], we developed the basic prin-
ciples of a new diagnostic approach for constant degree
structures. Our analysis was however limited to per-
fect test coverage, utilized more hardware than is ac-
tually necessary, and did not consider its application
to wafer testing. The approach described in this paper
removes all these limitations, and also analyzes those
dies at the boundary of the wafer which have less than
four neighbors (in the case of the rectangular grids).

Another novel aspect of the proposed approach is
the ease with which it can be implemented as a BIST
scheme on a wafer, thereby eliminating the need for
the expensive and time consuming wafer probe testing.
Using the new approach, the horizontal scribe area is
used to lay the four wire IEEE testability bus along
with the power and clock lines. It is assumed that
the vertical scribe area is used for alignment marks
needed for fabrication, and that all the new signal,
power and clock tracks in the horizontal area have an
order of magnitude more width than necessary to en-
sure their robustness. An extra signal track is used to
transmit the same pseudo-random vectors to all the
dies simultaneously [11]. After each transmission of
a new pseudo-random vector, the resulting output re-
sponse is scanned out one bit at a time from each die
and compared with its four (rectangular grid connec-
tion) or eight (octagonal grid connection) neighbors’®
responses. Any resulting mismatch between any pair
of neighbors is latched in a single flip-flop. The diag-
nosis is then performed locally based on the contents
of these flip-lops at the end of the test procedure. At

375

the end, a separate status flip-flop in each die contains
the diagnosed GO/NOGO status of the die.

The remaider of the paper is organized as follows.
In Section 2 we describe our test structure and com-
parison model. The diagnosis algorithm is given in
Section 3 and its performance is analyzed in Section 4.
Special considerations for boundary dies are given in
Section 5. Finally, we compare our approach with
other work in Section 6 and conclude the paper in
Section 7.

2 Wafer Test Structure and Compari-
son Model

The main objective here is to design a test struc-
ture on each wafer that is easy to implement, inex-
pensive, and help provide a high quality testing of its
dies. This structure is of course highly dependent on
the algorithm used for testing. In later sections, we
will describe our diagnosis algorithm which utilizes the
test structure and analyze its performance. However,
it is more convenient to start with a description of the
test structure and the comparison model.

2.1 Test Structure

In [10] we proposed a test structure, wherein each
unit has a comparator corresponding to each of its
neighbors. Test data is broadcast to all units and each
unit compares its result with those from its neighbors.
Our new test structure, however, has a comparator
corresponding to each pair of neighboring dies and
therefore the number of comparators is reduced by
half. In real implementations a comparator for a pair
of neighboring dies can be placed in either of these
two dies. We assume that each die is designed with
internal scan [12] philosophy which allows it to be
tested by pseudo-random or weighted pseudo-random
patterns [13, 14]. We also assume that each die con-
forms with the IEEE 1149.1 testability standard with
the test access port (TAP) and the associated test
bus signals test_data_in (TDI), test_data_out (TDO),
test_mode_select (TMS), and test_clock (TCLK). For
further details on this standard, the reader is referred
to [2]. With this standard, it should be possible to
lay out the the four-wire testability bus in the scribe
area of the wafer such that the dies can be accessed
by simply accessing this bus on the periphery of the
wafer.

Each pair of neighboring dies is connected by a
comparator consisting of an Exclusive-OR gate and



a latch. For each test pattern supplied, the TDO out-
puts from the two dies are sent to the comparator
and the comparison result is latched. The latch con-
tains a 0 (1) representing agreement (disagreement)
if the TDO outputs are identical (not identical) for
all (at least one) test patterns. The test structure for
the rectangular connection topology is shown in Fig-
ure 1, where a solid block represents a die. All dies
are identical in their test structure. For the sake of
clarity, only the central is shown with the complete
structure. The extra signal pins, PSI, from all the
dies are connected together for parallel feeding of test
patterns [11]. In real implementation these compara-
tors can be placed in the dies as shown by the dashed
blocks. If we consider a dashed block to be a die, then
the number of comparators per die is two. Each die
has the comparators for the north and west neighbors
only. This structure is a two-dimensional extension of
the pair-wise compare scheme described in [11]. With
this arrangement, the following test procedure is car-
ried out in parallel by all the dies for each of the test
patterns supplied:

1. Receive a pseudo-random pattern through the
TDI wire and store it in the internal scan chain
of each die.

2. Clock all the dies and capture the resulting test
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: Comparison structure

response in the internal scan chain.

3. Scan out the test response and send it through
the TDO pin to all the adjacent comparators.

After receiving the test responses from the two ad-
jacent dies, each comparator compares them bit by
bit and the resulting agreement/disagreement bit is
latched.

The above test-compare procedure can be executed
as many times as the number of test patterns need to
be applied. Note that the next test pattern is scanned
in at the same time while the test response is scanned
out.

At the end of the test-compare procedure, each of
the comparator latches contains a 0(1) if the dies com-
pared agree (disagree) in all (at least one) of the test
patterns.

Note that the test procedure described above is ex-
ecuted with the help of the TAP and the testability
bus.

As we can see from Figure 1, in addition to some
extra pins for each die, there is also some additional
circuitry, the status setting logic (SSL) and status in-
dicator (SI). These are designed for determining the
fault status of the die and their roles will be further
explained in Section 3.



So far we have been describing the test structure for
a die whose four neighbors all exist. For a die on the
boundary of the wafer, some of its neighbors may not
be available. This special situation will be addressed
in Section 5.

Notice that since the test data is broadcast to all
units simultaneously, all comparison tests are per-
formed at the same time and therefore take a constant
time proportional to the number of test patterns times
the length of the internal scan chain. Furthermore,
this arrangement does not require the storage of any
fault-free data for comparison, as described in {11].

We have introduced the rectangular grid compari-
son topology. The comparison relationship can also
take the octagonal grid topology, wherein each die
compares responses with eight neighbors.

2.2 Imperfect Comparison Test Model

We assume that the distribution of failure of dies is
binomial with probability p, 0 < p < 1. The compar-
isons can be modeled by an undirected graph G(V, E),
called the comparison graph, where V is the set of
vertices representing the dies and E the set of edges
representing comparisons. There is an edge between
vertices u and v if and only if there is a comparator
between u and v. The set of comparison outcomes
is called the syndrome of the wafer and can be seen
as a function w of edges. As we mentioned above,
we will allow the comparison testing to be imperfect.
We assume that the probability of w(u,v) = 1 for a
fault-free vertex u and faulty vertex v takes on some
value ¢, 0 < ¢ < 1, called the coverage of the test. For
an easier analysis, we also assume that this probabil-
ity is independent for the comparison outcomes. For
any two fault-free vertices u and v, the comparison
always leads to a match; in other words, we always
have w(u,v) = 0. In addition, the probability that
two faulty vertices produce all identical responses, or
w(u,v) = 0, is assumed to take on some small value
B, 0<B<L

3 Diagnosis Algorithm

The algorithm is similar to that presented in [10].
Unlike other probabilistic diagnosis algorithms which
use various forms of local voting for determining the
status of a unit, our algorithm considers the size of
a bunch of units which produce identical responses
and then determine the status of the whole bunch.
Such a bunch of units is called a faction. More pre-
cisely, a faction is a subset V' of vertices which induces
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a connected subgraph of G(V, E) such that 1) every
edge joining two vertices in V’ has the weight of 0
and 2) every edge joining a vertex in V' and a vertex
outside V' has the weight of 1. A faction may take
various geometric forms. In the case that a faction
of fault-free vertices forms a narrow string, the prob-
ability that they are correctly identified is small with
a majority voting based diagnosis algorithm because
they have very few fault-free neighbors to give them
credits. The geometric shape of a faction of fault-free
vertices does not affect the probability of their correct
identification in our algorithm, only does the number
of vertices in the whole faction. As we allow the fault
coverage of the test to be imperfect, a fault-free vertex
may agree with a faulty one. As aresult, fault-free and
faulty vertices may be in the same faction. We use a
threshold k for determining the status of a vertex. A
vertex v is considered to be faulty if it lies in a faction
of size less than or equal to k; otherwise, fault-free.
The basic idea resembles that behind the ¢-fault diag-
nosis algorithm of Chwa and Hakimi [5].

Algorithm 3.1 (Diagnosis Algorithm)
For every vertez v, label v “faulty” if it is in a faction
of size no larger than k; otherwise, “faull-free”.

As we will see in the next section, we can have
very good diagnosis performance with a small thresh-
old value k. Therefore, the determination of the sta-
tus of a vertex can be done in a small neighborhood
of the vertex under consideration. This allows for a
distributed implementation of the algorithm. For the
threshold k& = 2, syndrome decoding can be done lo-
cally as follows:

Algorithm 3.2 (Local Syndrome Decoding)

Step 1: For each vertez v, label v fault-free if there
are two edges incident on v with the weights of 0.

Step 2: For each vertez v not labeled in Step 1, label
it fault-free if it has a neighbor labeled fauli-free in
Step 1 and the edge joining them has the weight
of 0.

Step 3: For each vertez v not labeled, label it faulty.
End

Theorem 3.1 A vertez is identified to be faulty by
Algorithm 3.2 if and only if it is in a faction of size
no larger than 2.

Proof: If a vertex is in a faction of size larger than
2, then either it has two neighbors in the faction or it



has a neighbor which has two neighbors in the faction.
This means that it will be identified to be fault-free by
Algorithm 3.2 in either Step 1 or Step 2. This implies
that a vertex is identified to be faulty only if it isin a
faction of size no larger than 2. On the other hand, if
a vertex is in a faction of size no larger than 2, then it
has at most one neighbor in the same faction and that
neighbor, if it does have one, has the former as the
only neighbor in the faction. This means that neither
of them can be identified to be fault-free in Step 1. It
is clear that they will not be identified to be fault-free
in Step 2, either.
Q.E.D.
In Section 2 we described our test structure (see
Figure 1). For each die, we have a latch SI, called the
status indicator. There is also a status setting logic
SSL, which sets the status indicator according to the
comparison outcomes regarding the neighbors and the
contents of the SI's of the neighbors. With the above
circuitry, the diagnosis algorithm can be elaborated
on as follows.

Algorithm 3.3
Each unit performs the following steps in parallel:

Step 1: Initialize each SIto 1.

Step 2: Perform, in co-operation with the adjacent
comparators, the test-compare procedure described
tn Section 2.

Step 3: The SSL sets SI to 0 if two or more latches
of the adjacent comparators have the 0 value.

Step 4: Send the SI value to and receive the SI values
from the four neighbors.

Step 5: The SSL sets SI to 0 if it received a 0 ST value
from any of its neighbors and if the corresponding
comparison latch contains the 0 value.

Step 6: All units containing SI equal to 0 are declared
fauli-free (GO) and the remainder are declared
faulty (NOGO).

4 Performance Analysis

In this section we will analyze the performance of
our diagnosis algorithm. Let Pg(v) be the probability
that, given v fault-free, v is correctly identified and
Pg(v) be the probability that, given v faulty, v is cor-
rectly identified. Later on in this section we will give
analytical expressions for these two parameters. These
two parameters only show the quality of diagnosis of
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an individual vertex. A more useful criterion for as-
sessing an algorithm is the percentage of the vertices
which are correctly identified by the algorithm. This
translates to finding the ratio of the expected num-
ber of correctly identified fault-free (faulty) vertices
to the expected number of fault-free (faulty) vertices
in the whole system. For an easier and uniformed
analysis, we will only consider torus connected grids
in this section. An interesting result is that, for a torus
connected grid, these ratios are identical to the proba-
bility of correct identification of a fault-free vertex and
the probability of correct identification of a faulty ver-
tex respectively. For non-torus connected grids, both
Pg(v) and Pg(v) vary for dies v on or near the bound-
aries of the wafer. This will be discussed in the next
section. Let ¢ and f be the number of fault-free ver-
tices and the number of faulty vertices, respectively.
Let g. and f. be the number of correctly identified
faulty-free vertices and the number of correctly iden-
tified faulty vertices. These numbers are random vari-
ables. We use E[h] to represent the expectation of a
random variable A.

Theorem 4.1 For a torus connected grid, the follow-
ing holds:
1. Zld

Els] —

2. %[ff—‘]l = Pg(v).

where v is a vertez on the grid.

PG('U).

Proof Due to space limitation, the reader is referred
to [15] for the proof.

As we stated above, we assume that systems are
torus connected. This keeps Pg(v), as well as Pg(v),
the same for every vertex v and therefore simplifies the
calculation of the above ratios. In the following we will
deduce analytical expressions for Pg(v) and Pg(v) for
torus connected grids. We will only consider the case
of k = 2. We also assume that a grid has at least four
columns and at least four rows.

4.1 Rectangular Grids

If vertex v is fault-free, there are three classes of
local status-syndrome patterns corresponding to the
event that v is in a faction of size no larger than 2.
There is a single pattern in the first class in which v
disagrees with all its four neighbors. As v is fault-free,
the four neighbors must be all faulty. This status-
syndrome pattern is depicted in Figure 2(a). In this
and the following figures, a dark block represents a
faulty vertex, a grey block a vertex possibly faulty or
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Figure 2: Status-syndrome patterns for a fault-free
vertex

fault-free and a light block a fault-free vertex. An in-
ternal edge of a faction is represented by a thick line.
In the second class of status-syndrome patterns v has
a single fault-free neighbor u and they are surrounded
by faulty vertices. Note that the fault-free neighbor
can be anyone of the four neighbors of v. The pattern
in which u is to the east of v is depicted in Figure 2(b).
Rotating the picture round v 90 degrees at a time
produces the other three patterns in this class. In the
third class of status-syndrome patterns v is completely
surrounded by faulty vertices but exactly one of them,
say u, agrees with v and all the other three neighbors
of u disagree with u. As u is faulty, these three neigh-
bors may be either fault-free or faulty. The pattern in
which u is to the east of v is depicted in Figure 2(c).
Rotating the picture round v 90 degrees at a time
produces the other three patterns. It is easy to see
that these three classes of status-syndrome patterns
exhaust all the possibilities that v is in a faction of size
no larger than 2. Note that all these patterns are pair-
wise disjoint. This can be shown as follows. Assume,
to the contrary, that there are two patterns which are
identical. Overlay the two patterns and align them
according to the positions of v. We can find either a
vertex which is faulty in one pattern and fault-free in
the other or an edge whose weight is 1 in one pattern
and 0 in the other. This contradicts to the assumption
that the two patterns are identical. Let ¢2(v), ¢3(v)
and ¢3(v) be the probabilities that a fault-free vertex
v is in a faction corresponding to a first class status-
syndrome pattern, to a second class status-syndrome
pattern and to a third class status-syndrome pattern,
respectively. From the above discussions we have the
following.

Lemma 4.1 ¢{(v) = p*c*.

Proof. Consider Figure 2(a). Vertex v is given to be
fault-free. There are four vertices which are faulty.
This can happen with the probability p*. Four edges
each joining a fault-free vertex and a faulty vertex
have the weights of 1. The probability that this event

happens is c*, according to our model. The probability
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of occurrence for the whole event is therefore p*c*.

Q.E.D.
Lemma 4.2 ¢3(v) = 4(1 — p)pc®.

Proof: Consider Figure 2(b). There is another vertex
which is fault-free. The probability that this vertex
is fault-free is 1 — p. Six vertices are faulty and the
probability of its occurrence is p®. We can also note
that six edges each joining a fault-free vertex and a
faulty vertex have the weights of 1 and its probabil-
ity of occurrence is c®. Note that the weight on the
edge joining v and u is definitely 0 given that they
are both fault-free. The probability of occurrence for
the status-syndrome pattern shown in Figure 2(b) is
therefore (1 — p)p®c®. As there are four symmetric
patterns in the same class, we have the factor of 4.
Q.E.D.

Lemma 4.3 ¢5(v) = 4(1~C)63P4((1—P)C+P(1‘ﬁ))3-

Proof. The proof is similar to the proof of Lemma 4.2.
Note that there are three edges each joining the faulty
vertex u and a vertex which may be faulty or fault-
free. The probability that such an edge has the weight
of 1is (1 — p)c+ p(1 —B). The first term corresponds
to the case of the other end of the edge being fault-free
and the second term to the case of the other end of
the edge being faulty.

Q.E.D.

Theorem 4.2 Pg(v) =1 — (¢2(v) + a9(v) +¢3(v)).

Proof: From the above discussions we know that the
three classes of status-syndrome patterns are pairwise
disjoint and exhaust all the patterns corresponding to
the event that v is fault-free and is in a faction of size
no larger than 2. Hence the theorem.
Q.E.D.
Using the above results, we calculated the probabil-
ity Pg(v) for wide ranges of p and c values with 3 set at
0.01. The results are listed in Table 1. Comparing the
entries, we can see that the probability that a fault-
free vertex is correctly identified is even higher when
the fault coverage of the test is not perfect. We may
even find from Table 1 that the lower the coverage,
the higher is the probability Pg(v). This phenomenon
can be explained as follows. We can see from our al-
gorithm that if a fault-free vertex agrees with more
neighbors then it is more likely that it will be cor-
rectly identified. A fault-free neighbor will certainly
produce the same responses and therefore they agree
with each other. If the coverage is perfect, a fault-
free vertex will always disagree with a faulty one. If



Table 1: Performance on identification of a good vertex with 8 = 0.01

P Pa(v)

c= cC = c = c = c = c = c = c = c = c =

1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91
0.1 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
0.2 | 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
0.3 | 0.990 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.991
0.4 | 0.965 0.965 0.966 0.967 0.967 0.968 0.969 0.969 0.970 0.971
0.5 | 0.906 0.908 0.910 0.912 0.917 0.916 0.918 0.921 0.923 0.925
0.6 | 0.796 0.800 0.805 0.810 0.814 0.819 0.824 0.828 0.833 0.838
0.7 | 0.619 0.627 0.636 0.645 0.653 0.662 0.671 0.679 0.688 0.696

(@)

(b)

Figure 3: Status-syndrome patterns for a faulty vertex

the coverage is not perfect, then there is the possibil-
ity that a fault-free vertex may agree with a faulty
one and therefore this fault-free vertex is more likely
to be correctly identified. In the extreme case that
the coverage is 0, fault-free vertices will always agree
with faulty ones and therefore all fault-free vertices
can be correctly identified. This, however, does not
mean that the overall quality of diagnosis is higher
when the coverage is lower. When the coverage is
lower, the probability of correct identification for a
faulty vertex will be also lower. What is interesting
to see is that, for reasonable values of ¢, we can cor-
rectly identify fault-free and faulty vertices both with
high probabilities. In the following, we will analyze
the performance of our algorithm on the identification
of faulty vertices.

Assume that vertex v is faulty. Similar to the case
that v is fault-free, there are three classes of local
status-syndrome patterns corresponding to the event
that v is in a faction of size no larger than 2. The
first class contains a single pattern and is shown in
Figure 3(a). All the four edges incident on v have the
weights of 1. The vertices adjacent to v may be either
fault-free or faulty. In the second class of patterns v
has a unique faulty neighbor u which agrees with v.
The pattern with u to the east of v is depicted in Fig-
ure 3(b). Rotating the picture 90 degrees at a time
produces the other three symmetric patterns. In the
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third class of patterns v has a unique fault-free neigh-
bor u which agrees with v. The pattern with u to
the east of v is depicted in Figure 3(c). Rotating the
picture 90 degrees at a time produces the other three
symmetric patterns in the class. Similar to the case
that v is fault-free we discussed above, we can show
that these three classes of patterns are pairwise dis-
joint and they exhaust all the patterns corresponding
to the event that v is in a faction of size no larger than
2. Let gi(v) be the probability that, given that v is
faulty, v is in a faction of size no larger than 2 cor-
responding to a status-syndrome pattern in the first
class, g3 (v) the probability corresponding to a status-
syndrome pattern in the second class and g¢3(v) the
probability corresponding to a status-syndrome pat-
tern in the third class. The following conclusions fol-
low from these definitions and discussions. The proofs
are omitted due to space limitation.

—p)e+p(1 - B))*.
Lemma 4.5 g3(v) = 4pB((1 — p)c + p(1 ~ §))°.

41 -p)(1 - )p’e*((1 = pe
+p(1-8))°.

Theorem 4.3 Pg(v) = ¢i(v) + ¢3(v) + ¢3(v).

The probability Pg(v) is listed in Table 2 for a wide
variety of values of p and ¢ with 3 set at 0.01. We can
see from the table that a faulty vertex can also be
correctly identified with high probability. Pg(v) even
increases with the increase of p. This phenomenon
can be explained as follows. To identify a faulty ver-
tex, it is desirable that this faulty vertex disagrees
with its neighbors. A faulty vertex disagrees with
a fault-free neighbor with probability ¢ while it dis-
agrees with a faulty neighbor with probability 1 — 3.
How Pg(v) varies with p depends on how ¢ compares

Lemma 4.4 ¢} = ((1

Lemma 4.6 ¢3(v) =



Table 2: Performance on identification of a faulty vertex with 8 = 0.01

P Pr(v)

c= c = c= c= c = c= c= c= c = c =

1 099 | 098 | o097 |o096 |09 |o094 |093 [092 |o.91
01 | 0.99998 | 0.964 | 0.930 | 0.896 | 0.863 | 0.831 | 0.800 | 0.770 | 0.741 | 0.713
D2 | 09999 | 0.968 | 0.938 | 0.907 | 0.878 | 0.849 | 0.821 | 0.794 | 0.768 | 0.742
0.3 | 09998 | 0.973 | 0.946 | 0.920 | 0.897 | 0.869 | 0.844 | 0.820 | 0.796 | 0.773
0.4 | 0.9997 | 0.977 | 0.955 | 0.930 | 0.911 | 0.890 | 0.869 | 0.848 | 0.827 | 0.807
05 1 09996 | 0.982 | 0.964 | 0.947 | 0.929 | 0.912 | 0.895 | 0.877 | 0.861 | 0.844
0.6 | 09994 | 0.986 | 0.973 | 0.960 | 0.947 | 0.934 | 0.921 | 0.908 | 0.895 | 0.881
0.7 [ 0.9991 | 0.991 | 0.982 | 0.974 | 0.965 | 0.956 | 0.947 | 0.938 | 0.928 | 0.919

Table 3: Variation of Pg(v) and Pg(v) with 8
when p = 0.5, ¢ = 0.99

B= |B= |B= |B= B =

0.01 | 0.001 | 0.0001 | 0.00001 | 0.000001
Pg | 0.908 | 0.908 | 0.908 | 0.908 [ 0.908
Pp | 0.982 | 0.983 [ 0.983 | 0.983 ]0.983

with 8. For the calculations of Pg(v), we set B at
0.01. This implies that c is no larger than 1 — 3 for
the values of ¢ used in the table. We do not have any
statistics on the possible value of 8. The reason for
setting B at this value is that we believe 1 — 3 is likely
to be larger than ¢. When a faulty vertex compares
responses with another faulty vertex, two uncertain-
ties are involved. When a faulty vertex compares re-
sponses with a fault-free vertex, only one uncertainty
is involved. As a faulty vertex may be in one of many
different failure modes, 8 may take a very small value.
Table 3 shows how Pg(v) and Pg(v) vary with the
change in the value of 8. We can see from the table
that Pg(v) is immune to the change of B (to be ac-
curate, there is a slight change of Pg(v)) while Pg(v)
increases a bit with the decrease of 8. Rangarajan,
Fussell and Malek’s approach [3] requires that 8 be
extremely small as we will show in Section 6.

4.2 Octagonal Grids

Our algorithm is also applicable to an octagonal
grid. Due to space limitation, however, detailed an-
alytic results are omitted. Table 4 shows Pg(v) and
Pg(v) values for a variety of values of p with ¢ = 0.99
and 8 = 0.01. As we can see from the table, Pg(v)
improves from that for a rectangular grid.
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5 Boundary Considerations for Non-
Torus Connected Grids

In the last section we considered torus connected
grids, where every die was in the identical geograph-
ical position so far as the connection topology was
concerned and a uniformed solution was reached for
the probabilities of correct identification Pg(v) and
Pp(v). As a wafer is a plate in nature, a non-torus
connection topology is more natural and easier for im-
plementation. However, the dies on the boundaries are
not in an identical geographical position with the dies
in the inner part of the wafer and therefore special
considerations are needed. In the following we will
consider two specific issues associated with non-torus
connected grids. First, we will discuss a special cir-
cuit arrangement for the open pins from the dies on
the boundaries arising from lack of neighboring dies
to certain sides. Second, we will analyze the effects of
lack of such neighbors on the probabilities of correct
identification of boundary dies.

5.1 Arrangement for Open Pins

In principle, open output pins can be left open with-
out any negative effects. For the side of a boundary
die to which a neighboring die does not exist, there
is either an open TDO pin (input to the comparator
placed in the boundary die under consideration) or an
open comparison outcome pin (supposedly input from
a non-existing comparator latch placed in the non-
existing neighboring die), depending on whether the
comparator between the boundary die and its missing
neighbor is placed in the boundary die or in the miss-
ing neighboring die, fictitiously assuming the missing
die exists. There is also an open SI input pin sup-
posedly from the missing neighbor. A simple way to
handle these open pins is to fix these pins to the logical



Table 4: Performance on an octagonal grid with ¢ = 0.99 and 8 = 0.01

p=0.1 p=20.2 p=03 [p=04]|p=05|p=06|p=0.7
Pg(v) | 0.99999999 { 0.999997 { 0.99992 | 0.9991 | 0.994 0.972 0.899
Pg(v) | 0.930 0.937 0.944 0.951 0.958 0.965 0.973

“1”. When the open TDO pin is connected to “1”, a
fixed logical value, in the case that the comparator is
placed in the boundary die, the comparison outcome
will be “disagreement”, so will it when the compari-
son outcome input pin is fixed to “1” in the case that
the comparator is supposedly placed in the missing
neighbor of the boundary die. Fixing the open SI in-
put pin to “1” is equivalent to assuming that there is
a fictitious neighbor but this neighbor is not labeled
“fault-free” in Step 1 of Algorithm 3.2.

With the above arrangement of the open pins on the
boundary dies, the test procedure and local syndrome
decoding algorithm described in the previous sections
can be equally executed on all dies, whether boundary
or inner dies. It is also worth noting that the layout
of each die is kept the same and therefore the same
set of masks can be used for all the dies during the
manufacturing process.

5.2 Performance on Boundary Dies

As we stated above, the test procedure and local
decoding algorithm can be executed on all dies on a
non-torus connected grid with the arrangement of the
open pins described above. It is easy to see that Pg(v)
degrades somehow while Pg(v) improves somewhat for
a die v on or near the boundaries of the wafer. For
k = 2, the dies whose probabilities of correct identifi-
cation are affected will be limited to those who are on
the boundaries of the wafer or who have a neighbor
on the boundaries. For a wafer with a large num-
ber of dies, the number of such dies only counts for a
small fraction of the total number of dies and therefore
the ratio of the expected number of correctly identi-
fied fault-free (faulty) dies to the expected number of
fault-free (faulty) dies determined for torus connected
grids can be taken as an estimate of the correspond-
ing ratio for non-torus connected grids. For a wafer
with a small number of dies, the deviations of Pg(v)
and Pp(v) due to the irregularities on the boundaries
count significantly and must be dealt with separately.
We claim without elaboration, due to space limita-
tion, that the deviations of Pg(v) and Pg(v) for a die
which is not on the boundary but has a neighbor on
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the boundary from those for a die further inside the
wafer are extremely small. For those dies right on the
boundary we have analytic results on the performance
deviation. However, due to space limitation, we only
provide an example as given in Table 5, where (3 is set
to 0.01 and ¢ to 0.95, and the boundary die has only
two neighbors.

6 Comparison with Other Work

In this section we show some of the advantages of
our approach over Rangarajan, Fussell and Malek’s
[3].

First, our approach allows for a test set of mod-
erately high fault coverage while theirs requires that
the aggregate coverage of the test sets be exiremely
close to 100%. This can be shown as follows: In their
approach the fault coverage of a test, ¢, can be small,
for example, 0.1. However, a large number (r) of such
small coverage tests are performed corresponding to
each link. They assume that the total coverage of r
such tests is at least C = 1 —(1—¢)". For r = 500 and
¢ = 0.1 (these values were used in their examples), C
is about 1 — 10~23, This is extremely close to 1.

Second, their approach cannot tolerate systematic
errors but ours can to a large extent. Their results
were based on the assumption that two defective dies
almost never produce the same responses. As they
pointed out in their implementation considerations
section, systematic errors might invalidate this as-
sumption and therefore their voting scheme. Every
design has some week points which are more likely
subject to failures in the event of processing parame-
ter variations than other parts of the design. This is
one source of systematic errors. Systematic errors may
also occur if a flawed mask or dusted mask is stepped
across the wafer for the exposure of each die. When
systematic errors occur, the dies are likely to develop
defects of the same failure modes and therefore they
are likely to produce the same responses. Let 3 be the
probability that two defective dies produce identical
responses for all the r tests. From their assumptions
we have 3 = (1-C)? +(c/ f)*, where f is the number



Table 5: Performance on a boundary vertex

p=01]{p=02]|p=03|p=04|p=05|p=06]|p=0.7
Pg(v) | 0.990 0.958 0.902 0.817 0.702 0.559 0.397
Pg(v) | 0.912 0.922 0.932 0.943 0.954 0.967 0.978

of failure modes a defective die can be in. The first
item corresponds to the case that the faults in the two
defective dies are not covered by the tests and the sec-
ond item corresponds to the case that the faults in the
two dies are covered by the tests but these two dies are
in the same failure modes. For ¢ = 0.1, » = 500 and
f = 1000 (these values were used in their examples),
B is about 10~%6. This is extremely close to 0. As we
have seen in Section 4, our approach allows 8 to be
many orders of magnitude larger.

7 Conclusion

We have presented our test structure and diagnosis
algorithm intended for wafer testing. The test struc-
ture is very simple and easy for implementation. The
algorithm is also simple and needs only local infor-
mation for determining the status of a die. The test
time and the diagnosis time are both invariant with
respect to the number of dies on the wafer. Yet the
algorithm is able to correctly identify the status of al-
most all dies as we have seen in the last sections. The
algorithm is shown to be suitable for constant degree
connection structures such as rectangular and octag-
onal grids. It also allows for the fault coverage of the
test to be imperfect. As we have seen, we can achieve
a high quality of diagnosis with tests of moderately
high coverage. Since our algorithm works well when
the probability of failure is larger than 0.5, it can cope
with wafers of less than 50% yields. Another advan-
tage of our algorithm is that it can tolerate systematic
errors to a large extent. We believe our scheme is very
practical and worth implementing.
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